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Calculation of a Residual Mean Meridional Circulation for a

Zonal-Mean Tracer Transport Model

W. K. Choi, D. A. Rotman and D. J. Wuebbles

Global Climate Research Division

Lawrence Livermore National Laboratory

1. Introduction

Because of their computational advantages, zonally-averaged chemical-

radiative-transport models are widely used to investigate the distribution of

chemical species and their change due to the anthropogenic chemicals in the

lower and middle atmosphere. In general, the Lagrangian-mean formulation

would be ideal to treat transport due to the zonal mean circulation and eddies.

However, the Lagrangian formulation is difficult to use in practical applications

(McIntyre, 1980). The most widely-used formulation for treating global

atmospheric dynamics in two-dimensional models is the transformed Eulerian

mean (TEM) equations (Andrews and McIntyre, 1976). The residual mean

meridional circulation (RMMC) in the TEM system is used to advect tracers. In

this study, we describe possible solution techniques for obtaining the RMMC in

the LLNL two-dimensional chemical-radiative-transport model. In the next

section, the formulation will be described. In sections 3 and 4, possible solution

procedures will be described for a diagnostic and prognostic case, respectively.



2. Formulation

The set of equations in the TEM formulation are given as
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where   E  is the eddy heat flux convergence and µ  is the mixing ratio of chemical

species. The other notations have their usual meanings (see, for example,

Andrews et al., 1987). The RMMC obtained from the first four equations is used to

advect chemical tracers in (5).

The first four equations constitute a closed set of equations including two

prognostic equations and two diagnostic equations with four unknown variables.

The solution procedures are dependent on treatment of the temporal variations of

the zonal wind and temperature. If the temporal variation of the temperature is

negligible or can be specified, then the system becomes diagnostic and it is easier

to solve for the circulation as only two equations are needed (see description in the

next section). A disadvantage of this diagnostic system is that the radiative and

photochemical feedback on the dynamics is neglected. To handle this feedback,

temperature and zonal wind should be treated as prognostic values. In this



prognostic system, temperature and zonal wind are calculated as well as the

RMMC, using all four equations (1) to (4).

3. Diagnostic system

If the temporal variations of zonal wind and temperature are ignored or

known, only two equations, including (4) and either (1) or (3), are needed to solve

for the RMMC. Choosing which equation between (1) or (3) depends on the

difficulty of estimating the Eliassen-Palm (EP) flux divergence,   ∇ ⋅ F, and the

diabatic heating rate,   Q . For two-dimensional models, the thermodynamic

energy equation is generally used as the EP flux divergence is not computed in

those models. Calculating the RMMC from the zonal momentum equation is

useful for certain studies, for example, recently, Rosenlof and Holton (1993)

obtained the residual circulation they calculated based on the EP flux divergence

from the observed data.

The solution procedure for the diagnostic equation system is easier than

that of prognostic system, but there are some special difficulties to resolve. As

noted by Tung (1982), the two variables of interest,   v
∗ and   w

∗, require two

equations for solution; and furthermore, there is a constraint that must be

satisfied. The constraint is given as
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The problem is that the meridional velocity in the integrand is itself

unknown. The physically correct way of adjusting heating rates is using heating



rates on isentropic surfaces (Yang et al., 1990; Choi and Holton, 1991) on which

the meridional advection of heat vanishes. This isentropic adjustment of heating

rates is discussed in Appendix A. However, in the most two-dimensional models,

isobaric coordinates are used and interpolation of heating rates onto isentropic

surface is not very simple. For the isobaric system, Shine (1989) discussed several

methods of satisfying the above constraint. The most popular way is subtracting

the global average of the vertical velocity from velocities at each grid point on

isobaric surfaces. In this case the heating rates given originally is not changed

before and after calculation. Some scientists (e.g., Rosenfield et al., 1987) adjust

the heating rates for the global average heating to vanish before calculation of the

circulation. As shown in the Appendix B, this procedure makes the global

average of the vertical circulation multiplied by potential temperature vanish and

could be a good approximation of (6a) in the middle atmosphere.

Below, we provide two methods for the solution of the diagnostic equation

set.

a. Successive substitution

The vertical velocity in (3) can be rewritten by
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The first step is assuming the zero meridional velocity. The vertical velocity

can then be obtained directly and can be used to obtain the meridional velocity

through the continuity equation. This is the procedure used by Dunkerton (1978)

for the winter solstice condition. To include the effect of the meridional advection,



the meridional velocity is then substituted to obtain the vertical velocity. This

procedure continues until the solution converges. The vertical velocity should be

modified at each time step to satisfy the constraint (6a). Examples of vertical and

meridional velocities calculated from the total heating rates given in Fig. 1 from

the LLNL 2-D model are shown in Figs. 2 and 3.

An assumption in this method is that the meridional advection of heat is

much smaller than the vertical advection. This assumption is true in the middle

atmosphere where the slopes of isentropic surfaces are not steep. In the

troposphere, however, it is not always applicable. This method of successive

substitution does not always converge. Even though the solution converges, the

number of iterations in the model domain including the troposphere is much

bigger than that of the region including the middle atmosphere only.

If we knew whether the iteration would succeed or fail before calculation, it

would be very convenient. There is a convergence criteria of the successive

substitution method for simple nonlinear equations (for example, see Pearson,

1986). We are not aware if there is a similar criteria in this case.

b. Using an advection equation

When the method of successive substitution does not yield a converging

solution, a new technique is required. Instead of solving the two equations

simultaneously, one equation can be constructed from two equations utilizing the

stream function and can then be solved. An example of similar technique is found

in Holton and Choi (1988). A discussion about the stream function is found in

Appendix C.

Here we define the stream function ψ  by
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then the thermodynamic energy equation becomes an advection equation of the

stream function
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where the isentropic slope   S  and heating     Q̃  is defined by
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The numerical scheme we chose to solve (9) is the trapezoidal implicit

scheme (Haltiner and Williams, 1980). This scheme is numerically stable. A

disadvantage of this implicit scheme is that we have to invert a matrix to get a

solution. However, the matrix is tridiagonal and therefore can be easily solved by

the tridiagonal algorithm (see, for example, Richtmyer and Morton, 1967, Roache,

1972). A more serious problem in this scheme is that we cannot choose the

direction of integration freely. The factor determining the direction is the

magnitude of the grid intervals and   S . The possible direction of integration is

meridional one in this case. In meridional integration the boundary condition at

the top of the model domain is required. For this top boundary condition, the

stream function is obtained using (8b) from the vertical velocity in Fig. 2. This

stream function (Fig. 4) can be compared with the results from those calculated by

the trapezoidal implicit scheme.



To calculate the RMMC from the heating rate in Fig. 1, adjustment of

heating rate prior to the calculation is required since the solution technique does

not have a procedure satisfying the constraint (6a). In this study, we applied the

zero net heating condition although it is not always satisfactory in the

troposphere.

The solution procedure takes three steps. The first step is an integration

from the South pole to the North pole by using the zero surface value and

prescribed value at the top. The result from this step is shown in Fig. 5a. In an

ideal case, the values of stream function would turn out to be exactly zero at the

North pole. While the stream function is close to zero in the middle atmosphere at

the North pole, it is different from zero in the troposphere. In the second step, the

integration takes from the North pole to the South pole (Fig. 5b). And in the third

step, constructing a set of stream function out of two by using Southern

Hemispheric value from Fig. 5a and Northern Hemispheric value from Fig. 5b.

At the equator, the stream function should be matched. The result is shown in

Fig. 5c. The justification of this method lies in the fact that the heating rates is not

so accurate as boundary conditions in this problem. The boundary conditions are

more accurate and valuable than heating rates and therefore we have to utilize

this fact.

4. Prognostic system

The four equations from (1) to (4) can be combined into an equation for

stream function following Garcia and Solomon (1983). The temporal variation of

the zonal wind and temperature can be removed through the thermal wind

equation if the tangent factor of the relationship is neglected. The stream function

χ   is defined by
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The combined equation for χ  is as follows:
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Among the above coefficients,   Cyy  and   Cy  ,are slightly different from what

are given by Garcia and Solomon (1983) who used the temperature instead of

potential temperature in the thermodynamic energy equation. Also the last term

in the left hand side is not neglected. Contrast to the diagnostic system, the



knowledge of both EP flux divergence and the total diabatic heating is required to

solve (11). At the side boundary, the stream function can be set to be zero. The

bottom boundary condition is either specified (Brasseur et al., 1990) or is

calculated through the "downward control principle" (Holton, 1990; Haynes et al.,

1991; Garcia, 1991; Rosenlof and Holton, 1993). At the top     ∂χ ∂/ z = 0  is usually

specified.

In the LLNL two-dimensional model, one solution for (11) is obtained by the

method suggested by Lindzen and Kuo (1969). The numerical scheme is described

in Choi and Wuebbles (1993) in detail.

To test the solution technique we need the thermal and momentum forcing.

In the first step, we obtain the meridional circulation by the successive

substitution from the given heating rates (Fig. 6) with assuming zero temporal

variability of wind and temperature. The vertical and meridional velocities

obtained this way (Figs. 7 and 8) and the zonal wind and temperature are used to

construct the EP flux divergence and heating rates through (1) and (3)

respectively. The heating rates and the zonal momentum forcing (EP flux

divergence divided by density) constructed are shown in Figs. 9 and 10. These

values can then be used as forcing terms in (11). The stream function solved with

zero bottom boundary condition is shown in Fig. 11 and the vertical and

meridional velocities obtained from this stream function are shown in Figs. 12

and 13.

In an ideal case, the meridional circulations before (Figs. 7, 8) and after

(Figs. 12, 13) the calculation of (11) should be identical. There are, however, some

differences between those two sets of circulation. There are several reasons for

these differences. In the elliptic solver for (11) we have to assume the top boundary

condition; the choice of boundary condition may not resemble real features.

Another reason is that we ignored the tangent factor, which is the second term in



the left hand side of the thermodynamic equation (2) when we construct the

equation (11). The numerical error in the different finite difference forms might

also play a role. The pattern in Figs. 12 and 13 are much smoother than that of

Figs. 7 and 8 due to the smoothing effect of the elliptic solver.
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APPENDIX A

Zero Net Heating on Isentropic Surface

We are going to show that the global average of the density-weighted net

heating rates on an isentropic surface is close to zero. From the continuity

equation for the isentropic coordinates, (for example, Andrews et al., 1987)
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where   Q  is the diabatic heating rate and σ  is the density in the isentropic

coordinates defined by



    
σ ∂

∂θ
≡ − 1

g
p

(A2)

Zonal averaging of (A1) on isentropic surfaces gives
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Using the definition of σ , we can rewrite (A3) as
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Multiplying   cosφ  and integrating (A4) in latitudes from South pole to North

pole eliminates the second term in (A4) and yields
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Integrating (A5) in altitude from the top of the atmosphere to θ∗  gives
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since     p = =σ 0 at the top of the atmosphere. θ∗  is an arbitrary potential

temperature whose surface does not meet the ground. Rearranging the terms of

(A6) gives
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Equation (A7) can be rewritten as
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where   M∗ is total mass between the isentrope θ∗  and the top of the atmosphere

defined by
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Since     dM dt∗ /  is negligible (A8) becomes

    
σ φ φ

π

π

Q dcos
/

/

−
∫ ≈

2

2

0 (A10)

and thus we showed that the global average of the density-weighted heating is

negligible.

In the zonally-averaged formulation, (A10) cannot be used since the

relationship between the density and the heating rate is unknown following the

latitude circle. If we assume the covariance of the perturbations   ′ ′σ Q  to be

negligible, then (A10) is rewritten as
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which is a practical form for the heating rates adjustment in the zonal mean

model. In the middle atmosphere (A11) can be further simplified to give
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since the slope of the isentropic surface on the isobaric coordinates are very small

and thus the density does not change much on an isentrope.



APPENDIX B

Zero Net Heating on Isobaric Surface

The flux form of the thermodynamic energy equation (3) can be written by
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Integration of the above equation in latitude from South pole to North pole

eliminates the first term in the left hand side and thus
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The right hand side of (B2) is the net heating rates on an isobaric surface. If

we set this value be zero and integrate (B2) from z to infinity in altitude, then we

get
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Therefore putting the net heating rates to be zero is consistent with putting

the global average of the vertical velocity multiplied by potential temperature to be

zero. If the potential temperature does not change significantly on isobaric

surfaces, then (B3) could be a close approximation of (6a).

APPENDIX C

Stream Functions



The continuity equation (4) can be rewritten as

    

∂
∂

ρ φ ∂
∂

ρ φ
y

v
z

w0 0 0cos cos∗ ∗( ) + ( ) = (C1)

Stream functions satisfying the above equation can be defined in many

ways. We are going to discuss three types of stream functions found in literature.

They are   ψ 1,   ψ 2 and   ψ 3 defined by
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The widely used stream functions are   ψ 1 and   ψ 2. We are going to

concentrate on these and postpone the discussion about   ψ 3 later.

  ψ 1 is the mass flux stream function and identical to ψ  in the Section 3b. It

is found in some papers (e.g., Hitchman and Leovy, 1986, Holton and Choi, 1988).

Since   ψ 1 is presenting the real path of mass, it is useful for diagnostic purpose

(see Figs. 4 and 5).   ψ 2 is identical to χ  in the Section 4 and is also found in many

papers (Garcia and Solomon, 1983; Solomon et al., 1986; Brasseur et al., 1990,

Garcia et al., 1992). Brasseur et al. (1990) called   ψ 2 as the "velocity" stream

function contrast to the "mass" stream function of   ψ 1. There is an advantage in

using   ψ 2 instead of   ψ 1. Since   ψ 2 does not include the density factor, its variation is

close to linear (see Fig. 11) and thus it is easier to specify the top boundary

condition in terms of   ψ 2.

To use stream functions we need appropriate boundary conditions. If we

assume   w
∗ to be zero at the surface and use the fact that   v

∗ is zero at the both

poles, then the boundary conditions for   ψ 1 will be



  ψ 1 0= at     z = 0 (C3a)

  ψ 1 0= at   φ π= ± / 2 (C3b)

without loss of generality. The same boundary conditions can be applied to   ψ 2 as

well. The above conditions, however, would be sufficient but not necessary

conditions for   ψ 2. The general boundary conditions for   ψ 2 are

    ψ 2 = c at     z = 0 (C4a)

    ψ 2 = cez H/ at   φ π= ± / 2 (C4b)

where   c is an arbitrary constant. If we have an additional condition,     ∂ψ ∂2 0/ z =

at the top of the domain, which is not an unreasonable approximation, then   c

should be zero.

Among many types of stream functions only one function satisfies the

"conventional" definition which is that the streamlines are parallel to the velocity

field. To test the above point we take the differential of   ψ 1
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which can be rewritten, using (C2), as
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which is a condition of the streamline of   ψ 1 is parallel to the velocity field     v w∗ ∗( ), .

Likewise we can test   ψ 2 by the same method, which gives us
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which becomes identical to (C7) only when   ψ 2 0= .

The third stream function   ψ 3 is identical to   χmass
∗  used in Garcia and

Solomon (1983) and Solomon et al. (1986). Garcia and Solomon (1983) noted that

"isopleths of   χmass
∗  coincide with the streamlines of the velocity field in the

meridional plane". The above statement, however, is not true. On the constant   ψ 3

line we get
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  ψ 3 coincides with the velocity field only at the both poles (  ψ 3 0= ) and on the

equator (  tanφ = 0) exactly. However,   ψ 3 may look similar to   ψ 1 in the most region

of the atmosphere (see Fig. 2 by Solomon et al., 1986).

The two equations in p.1387 in Garcia and Solomon (1983) are incorrect.

They should be read

    χ ρ χmass
∗ ∗= s (C10)

      
v w

s

∗ ∗ ∗( ) = × ∇,
cos

i
1

ρ θ
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where they used notations   ρs and θ  instead of our   ρ0  and φ . The definition of the

"mass weighted stream function" in Solomon et al. (1986) should also be corrected

following (C10).
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Figure Captions

Fig 1. Zonal mean total heating rates (  K day-1) obtained from the LLNL 2-d model
with the eddy heating for the winter solstice condition. The contour interval
is 0.5.

Fig. 2. Vertical velocity (  mm sec-1) of the RMMC. The contour interval is 0.5.

Fig. 3. Meridional velocity (  m sec-1) of the RMMC. The contour interval is 0.5.

Fig. 4. Mass flux stream function (  kg m  sec-1 -1) constructed from the RMMC of
Figs. 2 and 3.

Fig. 5. Mass flux stream functions (  kg m  sec-1 -1). One integrated from the South
pole to North pole in (a), the other one integrated from the North pole to
South pole in (b), and the one matched between (a) and (b) in (c). See the
description in the text.

Fig. 6. Zonal mean heating rates (  K day-1) from the extended altitude model for
winter solstice condition. The contour interval is 1.

Fig. 7. Vertical velocity (  mm sec-1) obtained from the heating in Fig. 6. The contour
interval is 2.

Fig. 8. Meridional velocity (  m sec-1) obtained from the heating in Fig. 6. The
contour interval is 1.

Fig. 9. Heating rates (  K day-1) constructed by the RMMC in Fig. 7, 8 and
temperature through the thermodynamic energy equation. The contour
interval is 1.

Fig. 10. Zonal momentum forcing (  m sec  month-1 -1) constructed by the RMMC in
Figs. 7, 8 and zonal wind through the zonal momentum equation.

Fig. 11. Stream function (  m  sec2 -1) solved from the Equation (11) with the thermal
forcing in Fig. 9 and the momentum forcing in Fig. 10.

Fig. 12. Vertical velocity (  mm sec-1) obtained from the stream function in Fig. 11.
The contour interval is 2.

Fig. 13. Meridional velocity (  m sec-1) obtained from the stream function in Fig. 11.
The contour interval is 1.
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